Archives

Robots found to turn racist and sexist with flawed AI

Robots found to turn racist and sexist with flawed AI

A robot operating with a popular Internet-based artificial intelligence system consistently gravitates to men over women, white people over people of color, and jumps to conclusions about peoples’ jobs after a glance at their face.

The work, led by Johns Hopkins University, Georgia Institute of Technology, and University of Washington researchers, is believed to be the first to show that robots loaded with an accepted and widely-used model operate with significant gender and racial biases. The work is set to be presented and published this week at the 2022 Conference on Fairness, Accountability, and Transparency (ACM FAccT).

“The robot has learned toxic stereotypes through these flawed neural network models,” said author Andrew Hundt, a postdoctoral fellow at Georgia Tech who co-conducted the work as a Ph.D. student working in Johns Hopkins’ Computational Interaction and Robotics Laboratory. “We’re at risk of creating a generation of racist and sexist robots but people and organizations have decided it’s OK to create these products without addressing the issues.”

Also Read: Servian founder launches Video Intelligence Platform ‘VisualCortex’

Those building artificial intelligence models to recognize humans and objects often turn to vast datasets available for free on the Internet. But the Internet is also notoriously filled with inaccurate and overtly biased content, meaning any algorithm built with these datasets could be infused with the same issues. Joy Buolamwini, Timinit Gebru, and Abeba Birhane demonstrated race and gender gaps in facial recognition products, as well as in a neural network that compares images to captions called CLIP.

Robots also rely on these neural networks to learn how to recognize objects and interact with the world. Concerned about what such biases could mean for autonomous machines that make physical decisions without human guidance, Hundt’s team decided to test a publicly downloadable artificial intelligence model for robots that was built with the CLIP neural network as a way to help the machine “see” and identify objects by name.