Oxford Nanopore Technologies, the company delivering a new generation of nanopore-based molecular sensing technology, announced a new collaboration with UK Biobank to create the world’s first comprehensive, large-scale epigenetic dataset. The project will utilise Oxford Nanopore’s information-rich DNA/RNA sequencing technology to map the epigenome of 50,000 participant samples to unlock crucial insights into disease mechanisms, with the aim of improving patient outcomes. This publicly available data will serve as a unique resource for the scientific community, bringing new opportunities to advance our understanding of genomics.
Epigenetics is the study of how external factors, including lifestyle choices like smoking and diet, can modify an individual’s DNA. Epigenetic changes play a critical role in how genes are expressed and influence risk in diseases such as cancer and neurodegeneration. For example, research shows that epigenetics is key to uncovering how tumours grow and develop resistance to treatment. In one study, single-cell epigenetic profiling provided a detailed view of the diversity of cancer cells within a single tumour, helping pave the way for personalised cancer therapies that could overcome treatment resistance.
Also Read: Stryker Acquires NICO Corp, Expands Brain Surgery Tech
Oxford Nanopore sequencing provides a comprehensive view of up to 98% of the epigenetic methylation markers across the genome compared to only 3% based on microarrays. Methylation is an example of epigenetics that involves adding chemical (methyl) groups to DNA at specific sites without altering the underlying DNA structure. Oxford Nanopore is unique in its ability to sequence ‘canonical’ bases C, A, G, T plus methylation markers including 5mC, 5hmC, 6mA and all contexts. This unprecedented level of detail is possible through Oxford Nanopore’s direct sequencing of native DNA/RNA, which enables richer insights that were previously out of reach. Nanopore sequencing does not require any chemical (bisulfite) conversion to detect methylation, preserving all methylated bases as part of the nanopore genome sequencing run. As a result, long-range epigenetic modifications, structural variants (SVs), single nucleotide polymorphisms (SNPs), and repeats can all be identified and phased in a single dataset.
This collaboration aims to capture the full spectrum of the epigenome, or epigenetic markers across the genome, in a fast-evolving area of biomedical research with significant potential to improve lives. By capturing 98% of the epigenome, researchers will gain insight into what causes diseases to develop and progress, with the potential to develop targeted treatments for conditions like cancer, neurological and rare diseases. Importantly, this dataset will focus on predominantly healthy participants, providing an invaluable baseline for disease studies and supporting the creation of population-level risk profiles, allowing for tailored healthcare interventions going forward.
SOURCE: Businesswire