Archives

WiMi Developed Holographic Complex Amplitude Computation and Update Technology

WiMi Developed

WiMi Hologram Cloud Inc, a leading global Hologram Augmented Reality (“AR”) Technology provider, announced that it successfully developed a new technology—-“Holographic Complex Amplitude Computation and Updating Technology”, which utilizes the complex amplitude calculation method to achieve real-time updating and accurate reconstruction of holograms, and through the latest algorithms and sensing technologies, the holographic display system is able to deal with complex computational tasks more efficiently and provide a latency-free interactive experience. This technology is a breakthrough in the field of holographic display interaction.

The key feature of WiMi’s holographic complex amplitude computation and updating technology is that it can draw and erase 3D point cloud images in real-time and without delay, while enabling the observer to freely perform drawing and erasing operations in 3D space. This is based on complex amplitude computation, where the complex amplitude represents the amplitude and phase information of light waves, which is a key element in realizing accurate holographic displays. By using a motion sensor to detect the position of the observer’s fingertip, the system is able to calculate the complex amplitude distribution of the hologram. Unlike conventional methods, this technique is independent of the number of points that make up the 3D point cloud in each frame, allowing the system to update the hologram quickly, even as the number of points in the cloud increases.

This technique aims to address the limitations of existing holographic display systems in terms of real-time computation and interactive drawing. Through the accurate calculation and updating of complex amplitude, the technique enables holograms to be reconstructed at a much higher speed, realizing real-time drawing and erasing for interaction with the observer’s fingertips, which greatly enhances the user’s interactive experience in 3D space. The technology utilizes an advanced motion sensor system to accurately capture the position of the observer’s fingertip, and realizes the rapid reconstruction of holograms through the computation and updating of the complex amplitude distribution. The characteristics of holographic complex amplitude, combined with the latest algorithmic optimization, ensure that the system remains stable and efficient when processing large-scale 3D point cloud images.

Also Read : TechSee Brings Computer Vision AI and Augmented Reality Service Automation to Amazon Connect 

The framework of the holographic complex amplitude computation and updating technology is a combination of several key components that together form an efficient, real-time holographic display system. The system framework includes:

Sensor and localization: The motion sensor in the system is responsible for capturing the position of the observer’s fingertips and gesture movements. Through precise positioning technology, the system can accurately capture the observer’s gesture trajectory in the air, realizing real-time tracking and positioning of drawing and erasing operations in 3D space.

Complex amplitude computation: This module is responsible for computing the complex amplitude distribution of holograms. Using the complex amplitude computation method, the system is able to accurately describe the amplitude and phase information of light waves, thus realizing the accurate reconstruction and updating of the hologram. The efficient computation of this module ensures the real-time accuracy of the hologram.

Holograms updating engine: The holograms updating engine is the core component of the system, which is responsible for handling the computation and updating of the complex amplitude distribution. It adopts high-speed parallel computing technology, which can quickly handle large-scale computing tasks and realize real-time updating of holograms. The engine ensures that the system is able to quickly update the holograms in every frame, enabling the observer to enjoy a latency-free interactive experience.

SOURCE: PRNewswire